Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Cancer Biotherapy ; (6): 669-675, 2019.
Article in Chinese | WPRIM | ID: wpr-798315

ABSTRACT

@#Objective: To investigate the expression of metastasis-associated protein 2 (MTA2) in human bladder cancer tissues and its effect on the malignant biological behaviors of bladder cancer T24 cells, as well as to explore the effect of MTA2 on the progression of bladder cancer. Methods: Sixty-two cases of human bladder cancer tissues and 28 cases of normal bladder tissues (from patients with cystitis, and pathologically confirmed as normal tissue) were collected at People’s Hospital of Hebei Province during December 2012 and December 2014. The expression of MTA2 in bladder cancer tissues and normal bladder tissues was detected by immunohistochemical staining, and the correlation between MTA2 expression and clinicopathological characteristics of patients was also analyzed. The bladder cancer T24 cell line stably expressing MTA2 was constructed. The effects of MTA2 on the proliferation, colony formation, migration and invasion of bladder cancer T24 cells were detected by MTS, clone formation, scratch healing and Transwell assay, respectively. Results: Immunohistochemical staining showed that MTA2 expression was significantly up-regulated in bladder cancer tissues as compared with normal bladder tissues (P<0.01). The high expression of MTA2 in bladder cancer tissues was not related to gender, age and tumor volume (P>0.05), but was associated with higher TNM stage, histological grade, and lymphatic infiltration and metastasis (all P<0.05). After over-expression of MTA2 in bladder cancer T24 cell line, the proliferation activity of the cells was significantly increased (P<0.05), and the colony formation, scratch healing, migration and invasion ability were significantly increased (all P<0.01). Conclusions: MTA2 is up-regulated in human bladder cancer tissues and can promote the proliferation, tumor formation, migration and invasion of T24 cells.

2.
Cancer Research and Clinic ; (6): 729-734, 2018.
Article in Chinese | WPRIM | ID: wpr-712893

ABSTRACT

Objective To investigate the effect of ERH gene knockdown on the proliferation and apoptosis of human bladder cancer T24 cells. Methods T24 cells infected by lentivirus with interference on ERH gene sequence were cloned to establish stable T24 cells clone in ERH gene suppression. The expression of ERH mRNA gene in bladder cancer was detected by using quantitative real time polymerase chain reaction (qPCR). The effects of ERH knockout on the cell proliferation and apoptosis were examined by using methylthiazolyl tetrazolium (MTT) assay, colony formation assay and flow cytometry. The effect of ERH knockout on the tumorigenic effect of T24 cells in vivo was verified by subcutaneous tumor formation in nude mice. Results After lentiviral transfection, qPCR results showed that the knockdown effect of ERH mRNA in ERH normal group (untreated T24 cells) was better than that in ERH gene knockdown group, and the difference was statistically significant [(1.006±0.126) vs. (0.079±0.007); t=12.72, P=0.0002]. After knocking out ERH gene, MTT assay showed that the proliferation ability of T24 cells in ERH gene knockdown group was weakened compared with ERH normal group, and the difference was statistically significant [A490 value: (0.13±0.00) vs. (0.66±0.01);t=104.61, P<0.0001]. Colony formation assay indicated that the ability of clone in ERH normal group was weakened compared with ERH gene knockdown group [(10.5 ±1.2) vs. (196.4 ±4.0); t= 73.63, P< 0.0001]. Flow cytometry showed that the cell apoptosis rate in ERH gene knockdown group was higher than that in ERH normal group [(11.0 ±0.5) % vs. (4.2 ±0.5) %; t= 16.06, P<0.0001]. Imaging results of subcutaneous tumor formation in nude mice showed that the total fluorescence intensity of the tumor area in ERH gene knockdown group was (4.67 ±0.59) × 1010 μW/cm2, and the corresponding part in ERH normal group was (9.54±4.20) × 1010μW/cm2 (t=3.64, P=0.0051);tumor weight in ERH gene knockdown group was (0.80±0.62) g, and in ERH normal group was (1.79±0.71) g (t=3.33, P=0.0037). Conclusion ERH gene knockout can inhibit the proliferation of human bladder cancer T24 cells, and promote the cell apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL